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ABSTRACT
We conduct machine learning experiments on time-dependent
gene expression measurements associated with the immune
response to influenza in humans. We employ three partitions
of the two data sets focusing on H1N1 only, H3N2 only and
H1N1 and H3N2 combined. From a total set of 1439 known
biological pathways, we identify the most discriminatory, po-
tentially capable of providing a very early prognosis of infec-
tion, focusing on the time period t ≤ 29 hours post infection.
We apply a suite of different machine learning algorithms to
these partitions including linear, nonlinear, and sparse sup-
port vector machines. In addition, we use artificial neural
networks (ANN), k-nearest neighbors and classification on
Grassmann manifolds. The cAMP Signaling pathway and
the genes PAPSS1 and PAPSS2 appeared to play central
role in the very early prognosis problem.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation—Nonlinear
approximation; G.1.6 [Numerical Analysis]: Optimiza-
tion—Constrained optimization, Linear programming ; I.5.1
[Pattern Recognition]: Models—Geometric, Neural nets;
J.3 [Life and Medical Sciences]: Medical Information
Systems

Terms
Algorithms,Performance

Keywords
Complex data, biological pathway analysis, Grassmannian
classification, sparse support vector machines.
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1. INTRODUCTION
Human influenza A viral infection, which includes the

H1N1 and H3N2 strains, is one of the chief culprits of acute
respiratory infections (ARIs) worldwide [1]. Viral ARIs are
generally self-limited, and infected patients generally recover
within one or two weeks without treatment. However, vi-
ral ARIs such as influenza can lead to disease exacerbation
among individuals with prior pulmonary disease, and severe
cases can lead to mortality in elderly and immunocompro-
mised individuals [2]. Moreover, significant health care and
social costs are associated with influenza epidemic due to
the excessive hospitalizations and the need for production
of a large amount of vaccines [3].

The evolution of the virus may escalate the global trend of
clinical influenza infections and may even result in periodic
epidemics [4]. Under these circumstances, early diagnosis of
influenza A is essential to facilitating individual treatment
decisions as well as aiding in forecast of an epidemic [5].
Traditionally, the test for human influenza A infection is
based on pathogen detection [6], a method which has shown
its limitations since the first outbreak of H1N1 in 2009.

Several previous studies have explored the potential for
diagnosis of infection with H1N1 and H3N2 by extracting
whole blood RNA samples to monitor changes in host gene
expression in response to infection [4, 7, 8]. There is evidence
that host gene signatures can provide a reliable method
of pre-symptomatic detection for viral ARIs, including in-
fluenza A [9]. In two previous studies, healthy volunteers
were inoculated with either H3N2 [7] or H1N1 [4] and mon-
itored for development of illness. Blood RNA samples were
taken for both groups prior to infection and again periodi-
cally after inoculation in order to monitor the temporal re-
sponse of the host to each disease. This genetic data was
analyzed for possible markers to differentiate infected indi-
viduals from controls [4, 7, 10].

The goal of this study is to explore the ability of different
machine learning algorithms to discriminate control samples
collected prior to inoculation, and samples associated with
symptomatic subjects at the very earliest stages of infection.
We focus on developing a pathway based approach that as-
sembles collections of genes associated with a particular bi-
ological mechanism. Using the previously mentioned human



viral challenge data sets, we focus on distinguishing between
infected and healthy individuals using data collected during
the first 29 hours of both studies. This time-frame is well
before the onset of the symptoms that generally occur at
40-60 hours.

2. THE INFLUENZA DATA SETS

Table 1: Distribution of subjects from the H1N1
and H3N2 data sets. For each subject, there are 2
pre-infection samples and 14 time dependent post-
infection samples.

Data Set Controls (C−) Symptomatic Infected (C+)
H1N1 30 samples 9 samples
H3N2 29 samples 9 samples

H1N1 & H3N2 59 samples 18 samples

We conduct data learning experiments on two microar-
ray data sets collected in association with disease challenges
with human subjects, as summarized in Table 1. The first
experiment consists of 24 human subjects inoculated with
the H1N1 strain of influenza A (A/Brisbane/59/2007) [4].
The second challenge involved 17 human subjects who were
inoculated with H3N2 (A/Wisconsin/67/2005) [7]. In both
studies, it was deemed that certain data samples had irreg-
ularities, i.e. the clinical presentation was inconsistent with
the results of viral diagnostic tests. Such data has been re-
moved from consideration. Thus, as done in previous stud-
ies, for H1N1 a total of nine subjects were omitted, while
for H3N2 two subjects samples were not included in the
analysis [4]. Each data set thus consists of 9 symptomatic
infected and 6 asymptomatic uninfected subjects. The sam-
ples from symptomatic uninfected and asymptomatic in-
fected subjects were discarded. All subjects had peripheral
blood samples taken prior to inoculation with virus (t = −5
and t = 0 hours) and at specific intervals following inocula-
tion. For both H1N1 and H3N2, the actual time points of
data sampling belong to the set t = {−5, 0, 5, 12, 21.5, 29, 36,
45.5, 53, 60, 69.5, 77, 84, 93.5, 101, 108} hours.1

For the control group, we use pre-infection data consisting
of samples taken at t = −5 and t = 0 for all subjects in
both studies. The controls are referred to as the C− class.
The data used for the infected group, or C+ class, consists
only of subjects classified as both symptomatic and infected.
Experiment one uses C+ data taken from the H1N1 data set
only, experiment two uses data from the H3N2 data set only,
and experiment 3 uses C+ data from both data sets. C+ is
analyzed for t = 5, 21.5, and 29 hours.

In Figure 1, we visualize trajectories of the cAMP signal-
ing pathway associated with asymptomatic (blue) and symp-
tomatic (red) subjects. There is evidence that this pathway
plays a role in the immune response; in this paper, we re-
port that it serves as a signature for H1N1 infection using
nonlinear SVM with polynomial kernel of degree 2 at t = 5
hours with 100% accuracy on the available data.

Biological Pathways
As originally proposed in [11], our data analysis is based
on the exploration of the time evolution of biological path-

1These datasets may be downloaded at:
http://people.ee.duke.edu/∼lcarin/reproduce.html.

Figure 1: Trajectories of the cAMP pathway asso-
ciated with asymptomatic (blue) and symptomatic
(red) subjects. The coordinate system consists of
the first three principal components of PCA.

ways rather than single gene expression levels. A pathway
consists of approximately 10 - 100 genes, encapsulated into
a single high dimensional trajectory that evolves in time.
The motivation for this stems from the fact that pathways,
as multivariate biological units reflecting specific function,
capture a stronger signal than single genes and, based on
our experience, enable higher classification accuracy.

A total of 1439 time-evolving pathways are assembled
from the micro-array data sets. This is accomplished by
mapping the genes from the available data matrix to the
appropriate subsets of genes which comprise the biological
pathways. These pathways capture the complex interactions
between genes associated with biological processes, includ-
ing metabolism and the immune response to infection. The
pathways that form the backbone of our analysis are based
on information from the Broad institute database [12, 13],
comprising:

• 217 BioCarta pathways

• 295 KEGG pathways

• 10 Matrisome pathways

• 196 Pathway interaction database (PID) pathways

• 674 Reactome pathways

• 10 SigmaAldrich pathways

• 8 Signaling gateway pathways

• 28 Signal Transduction KE pathways

• 1 SuperArray pathway

The information required to assemble these pathways is avail-
able at http://software.broadinstitute.org.

3. METHODOLOGY
Here we briefly overview the methodology employed for

classifying the data. It is interesting that no single method is
superior in every experiment, underlining the need for a full
toolbox of approaches to explore high-dimensional data sets.



One of the most powerful methods involves the mathemat-
ical framework of the Grassmann manifold and the compu-
tation of angles between subspaces. We use the known tech-
nique of support vector machine (SVM), both linear with
C = 1 [14, 15] and nonlinear with a polynomial kernel of
degree two [16]. In addition, we apply a feature selection
version of SVM which we refer to as sparse support vector
machines. This linear technique performs an in situ subset
selection of the genes performing the classification.

3.1 Sparse Support Vectors Machines
An arbitrary norm separating hyperplane was proposed

in [17]. We employed the `1-norm hyperplane to induce
sparsity and in situ feature selection [18, 19, 11]. Here we
are interested in solving the l1 norm support vector machine
optimization problem

minimize ‖w‖1 + CeT y (1)

subject to the constraints D(Zw−ge)+y ≥ e, y ≥ 0, where
w ∈ Rn, g ∈ R, and e, y ∈ Rm. The class combined data
matrix is Z ∈ Rm×n, where each row is an observation, and
D is the matrix of binary class labels.

We use the substitutions |wi| = w+
i +w−

i and wi = w+
i −

w−
i with the imposed constraints w+

i , w
−
i ≥ 0; see [19]. Since

the scalar g is a free variable, we rewrite it g = g+−g− where
g+, g− ≥ 0. Our decision variable is then

xT = [w+w−g+g−y] ∈ R2n+2+m

The associated cost vector is cT = [en en 0 0 Cem] So we
are solving the linear programming problem

maximize cTx

subject to the side conditions Ax ≥ b, x ≥ 0 where

A = [DX −DX −De De I] (2)

and b = em. See also [20]. The linear optimization problem
which is solved by SSVM can be solved in polynomial time
by interior point methods [21].

3.2 Classification on Grassmannian
The geometric framework of the Grassmann manifold has

proven very effective for capturing the variability in large,
complex data sets [22, 23, 24, 25, 26]. For example, one
subspace angle is enough to separate the CMU-PIE data set
as described in [27]. Facial recognition is possible at ultra
low-resolution on the Grassmannian [28]. We now briefly
describe the methodology, leaving the reader seeking more
details to consult the references above.

We assume the data comes from one of two classes: asymp-
tomatic control subjects C− and symptomatic subjects C+.
We associate with each experiment a data matrix X =
[x(1), . . . ,x(p)] with C+ samples and a data matrix Y =

[y(1), . . . ,y(q)] with C− samples. Here x(i), y(j) ∈ Rm and
m is the ambient dimension of the data. In the context of
pathway analysis, the dimension m is the number of genes in
the pathway. For each matrix X (and Y ), we apply singular
value decomposition (SVD) on them respectively, where

X = UXΣXV
T
X and Y = UY ΣY V

T
Y

Here the columns of UX and UY are the left singular vectors
of X and Y , which form a basis of the subspace spanned by
columns of X and Y , respectively. We then pick d columns

Table 2: Balanced accuracy for H1N1.

Method t = 5 h t = 21.5 h t = 29 h
Sparse SVM 96.66 89.44 96.66
Linear SVM 91.11 83.89 92.78

Nonlinear SVM 100 85.56 92.78
Subspace 88.0 82.67 87.78

ANN 92.39 85.94 94.67
k-nearest neighbors 83.88 76.66 81.66

Table 3: Balanced accuracy for H3N2.

Method t = 5 h t = 21.5 h t = 29 h
Sparse SVM 94.44 92.02 89.27
Linear SVM 87.16 92.03 91.0

Nonlinear SVM 94.23 90.30 91.0
Subspace 82.0 89.66 89.27

ANN 85.38 95.23 93.16
k-nearest neighbors 81.60 88.57 90.99

of UX and UY corresponding to the d largest singular values
to represent the subspace spanned by columns of X and Y .
Note that for this experiment, we pick d to be 5 (H1N1),4
(H3N2) and 4 (H1N1 and H3N2 combined). These d left
singular vectors constitute the d dimensional optimal basis
of that class, BX and BY .

To classify a test point t ∈ Rm, we calculate its princi-
pal angle from the optimal basis of X and Y , BX and BY ,
respectively. The point is classified in the class with which
its principal angle is smaller. The accuracy showed in this
paper is obtained by using leave-one-out method for each
experiment and then computing the balanced success rate.
Leave-one-out cross validation technique has been used with
repetition of 30 times to calculate the balanced success rate.

3.3 Artificial Neural Networks
Artificial Neural Networks is a state-of-the-art machine

learning technique for classification and dimensionality re-
duction [29, 30, 31]. In this paper, we used a network ar-
chitecture with two hidden layers each comprising of 10 hid-
den units with hyperbolic tangent as the non-linear trans-
fer function. In training phase, Scaled Conjugate Gradient
method [32] is used to minimize the cross-entropy error [33]
of the network. In any conjugate direction search method
there is an extra overhead of line search to figure out the
step size in each iteration. But in scaled conjugate gradient
method the line search is avoided by using the Levenberg-
Marquardt approach to scale up step size. This makes this
algorithm considerably faster than other second order meth-
ods like BFGS, CGL etc.

4. RESULTS
We conduct three experiments to test the accuracy of the

pathways for early prognosis. The machine learning explo-
ration focuses on three tasks, i.e., Experiment 1: H1N1 data
only, Experiment 2: H3N2 only and Experiment 3: H1N1
and H3N2 combined. In all our experiments, we use sam-
ples from 15 subjects at time -5, 0 and ti hours, where ti can
be 5, 21.5 or 29 hours. We split the data into two classes,
healthy and sick. We use the cross-validation leave-one-out



Table 4: Balanced accuracy for the combined data
sets H1N1 and H3N2.

Method t = 5 h t = 21.5 h t = 29 h
Sparse SVM 88.27 83.99 83.56
Linear SVM 82.72 79.36 91.05

Nonlinear SVM 84.17 80.30 85.40
Subspace 76.55 81.80 80.65

ANN 81.62 79.87 80.55
k-nearest neighbors 67.60 70.08 79.33

technique to test our models.

4.1 Classification rates
We show the balanced success rates in Tables 2-4 using

six methods including linear, nonlinear, and sparse SVM, in
addition to k-nearest neighbors, classification on the Grass-
mannian, and artificial neural networks (ANN). It is note-
worthy that sparse and nonlinear SVM take turns at having
the best performance, with the exception of t = 21.5 hours
and t = 29 hours in the H3N2 experiment where ANN per-
forms best. Linear SVM and ANN are both uniformly ac-
curate across all experiments, while the subspace method
and k-nearest neighbors are consistently less accurate. Ex-
periment 1 with H1N1 is more accurate than Experiment 2
with H3N2, and both are more accurate than the combined
experiment.

4.2 Pathway Analysis
In this section, we summarize the top pathways for each

experiment at each time point. The best pathways at each
time point are examined for all experiments below.

In the first experiment on the H1N1 data only, the cAMP
signaling pathway classifies with 100% accuracy at t = 5
hours with the nonlinear SVM model. It has been estab-
lished that the cAMP signaling molecule is a secondary sig-
naling molecule involved in immune system regulation. It
acts on protein kinase A [34]. The pentose and glucuronate
interconversions pathway performed best at t = 21.5 hours,
with a BSR of 89.44% for the sparse SVM method. This is
a metabolic pathway for carbohydrates. The NF-kappa B
signaling pathway achieved a BSR of 96.66% for the sparse
SVM method at t = 29 hours. It includes of set of tran-
scription factors that regulate genes involved in immune re-
sponse. Nuclear factor-kappa B has been found to play a
primary physiological role in the immune system [35].

For the second experiment, using only the H3N2 data, the
top pathway at t = 5 hours is the reactome developmental
biology pathway. It is selected by sparse SVM with a BSR of
94.44%. This pathway is involved in cell differentiation and
transcriptional regulation of development of blood cell com-
ponents. At t = 21.5 hours, the purine metabolism pathway
is selected by sparse SVM with a BSR of 92.02%. This is a
metabolic pathway for the nucleic acid purine that has been
shown to play a role in immune response [36]. The seleno-
compound metabolism pathway is a metabolic pathway for
building certain amino acids and is selected by both ANN
and SSVM as the top pathway at t = 29 hours. It has a BSR
of 89.27% using sparse SVM and 93.16% using ANN. It is a
small pathway containing only 17 genes that has very little
overlap with other pathways. However, this pathway shares
the genes PAPSS1 and PAPSS2 with the purine metabolism

pathway. These two genes are associated with the protein 3’-
phosphoadenosine 5’- phosphosulfate synthesis, which pro-
duces a sulfotranferase involved in viral entry into cells [37].

For the combined H1N1 and H3N2 experiment, the PID
CD8 TCR pathway performed best at t = 5 hours with a
BSR of 88.27%; this pathway was selected by the sparse
SVM method. It is related to T cells, which are involved
in the suppression of excessive immune response [38]. The
PID PDGFRB pathway was selected as the best pathway at
t = 21.5 hours by sparse SVM, with a BSR of 83.99%. This
protein is platelet-derived growth factor receptor beta, and
the pathway is part of a system of negative immune system
regulators that prevent the immune response from cascading
out of control [39]. The acute myeloid leukemia pathway is
the top pathway selected by linear SVM for the combined
data experiment, with a BSR of 91.05%. It is associated with
leukemia and contains proteins that up-regulate cell survival
genes. The PID LIS1 pathway yields a BSR of 95.23% at
t = 29 hours for ANN on the H3N2 data set. This pathway is
related to motor proteins and neuronal migration and affects
cranial development [40].

We note that each classification method addresses the ge-
ometry of the data differently and as a consequence may
reveal distinct optimal pathways.

4.3 Sensitivity and Specificity
Sensitivity and specificity are basic descriptive statistics

that measure the quality of a decision function, or model, for
a two-class classification problem. In this problem, we refer
to symptomatic infected samples as the positive class and
the controls as the negative class. Sensitivity is a measure
of the fraction of symptomatic infected samples that are
correctly classified, while specificity is the fraction of control
samples correctly classified. The average of the sensitivity
and specificity is referred to as the balanced success rate
(BSR) and is a measure of classification accuracy that is
especially effective when the number of elements of one class
differs substantially from that of the other.

In Figure 2, we see the distribution of sensitivities and
specificities for the H1N1 pathway classifiers based on the
sparse support vector machine model. Every point corre-
sponds to a pathway in the sensitivity-specificity plane. The
9 levels of quantization along the y-axis are due to the fact
that we have 9 symptomatic subjects while the 30 levels of
quantization on the x-axis come from the 30 samples from all
subjects at t = −5, 0. We highlight the top sensitive (red)
and specific (blue) pathways. We see a general trend in
this figure, as well as the other sensitivity-specificity plots,
where the points are shifted to the right. This is because
pathways that contain no information about the immune
response can’t be used discriminate sick and healthy sub-
jects; these pathways simply indicate the subject is in the
same class as the controls. This makes sense from the point
of view that many pathways concern basic biological func-
tions unrelated to the host immune response. In Figure 3,
we see a similar pattern for H1N1 (above) and H3N2 (below)
at time t = 29 hours.

4.4 Pathway variation
In Figures 4-6 we show the variation of the given pathway

accuracies over the the life of the H1N1 experiment. In
Figure 4, we select five pathways which are determined to be
optimal using sparse SVM for t = 5 hours. We see that the



Figure 2: The sensitivity and specificity of biologi-
cal pathways using a sparse support vector machine
classifier to discriminate between symptomatic and
control subjects at 5 hours post infection. Top:
H1N1, Below: H3N2.

Figure 3: The sensitivity and specificity of biolog-
ical pathways using a sparse support vector ma-
chine classifier to discriminate between H1N1 symp-
tomatic and control subjects at 29 hours post infec-
tion. Top: H1N1, Below: H3N2.

accuracy of these pathways drops to 50%-60% by t = 21.5
hours. The situation is similar for top pathways at t =
21.5 hours, as seen in Figure 5, with the top five pathways
again selected by sparse SVM classification. In Figure 6,
the accuracy of the top pathways at t = 29 hours is lower
at approximately 85%. This suggests that the question of
prognosis is heavily dependent on what stage the subject is
at, i.e. the best pathways depend on the time elapsed since
exposure.

5. PRIOR WORK
We now briefly review the statistical and machine learning

literature related to experiments that have been conducted
on the H1N1 and H3N2 data sets considered here. We note
that some of these experiments include additional data not
considered in the current investigation. The focus of this pa-
per exclusively concerns influenza. The experiments can be
divided into those that ignore temporal evolution and those
that account for the time-dependent nature of the data.

5.1 Time-Independent Studies
Zaas et al. [7] used the H3N2 dataset in development of



Figure 4: The balanced success rate as a function of
time post infection for the pathways that are optimal
at t = 5 hours post infection by H1N1. Pathways
selected using sparse SVM.

a gene expression signature for identifying HRV, RSV, and
influenza. All data sets were combined and analyzed as a
whole using leave-one-out cross validation, then further an-
alyzed by training on one data set and testing on the other
two. When validated on the pediatric influenza data set
from [41], the gene signature was able to accurately classify
all subjects. The ability of the gene expression signature to
differentiate between influenza and bacterial infection was
also tested, with a reported accuracy of 80% [7].

A later study of the data sets from Zaas et al. [7] utilized
a biomarker discovery method and SVM models to clas-
sify subjects as infected or uninfected using 10-fold-cross-
validation [42, 43]. Estimated predicted accuracy of this
method was stated to be 0.94 AUC. Analysis of all data
samples produced a 12 gene signature with a predicted ac-
curacy of 0.99 AUC [42].

Davenport et al. [10] performed PCA on data from their
own experiments involving H3N2 vaccination and infection
and developed a six gene signal for classification and tested
it on the H3N2 dataset from [8], using data ranging from 48
to 69 hours for infected individuals. This signal was able to
correctly classify all controls and 89% of the infected indi-
viduals [10].

In 2013, Zaas et al. [44] used both the H1N1 and the H3N2
data set to develop and test an RT-PCR assay classifier for
influenza. The classifier was first trained and validated sepa-
rately on each data set using leave-one-out cross-validation.
This resulted in 0% error for H3N2 and 13% error for H1N1.
The classifier was then trained using one data set and vali-
dated on the second data set. Training on H3N2 and testing
on the full H1N1 set yielded a 17% classification error, and
testing on the H1N1 data set with five ambiguous individ-
uals omitted yielded 6.7% error. Training on the full H1N1
data set and testing on H3N2 resulted in a 0% error, whereas
training on the H1N1 data set with the same five individuals

Figure 5: The balanced success rate as a function of
time post infection for the pathways that are optimal
at t = 21.5 hours post-infection by H1N1. Pathways
selected by sparse SVM.

removed resulted in 13% error. Finally, the two data sets
were combined and randomly partitioned 100 times, with
50% used for training and the rest used for testing. The
average AUC was 0.975 for all runs [44]. The classifier was
then tested on a set of 102 individuals, including 35 controls,
28 with viral infections, and 39 with bacterial infections, to
determine its ability to correctly identify respiratory viral
infections. Of those with viral infections, 25 had H1N1 and
the remaining 3 were infected with rhinovirus. 89% of the
subjects with viral infections were identified correctly, and
10.3% of the bacterial infections and 3% of the controls were
incorrectly labeled as viral [44].

Tzu-Yu Liu et al. [45] designed a reference-aided classifica-
tion algorithm based on the viral challenge study model by
learning sparse linear score functions in a multi-block multi-
class SVM and found a smaller test panel without sacrifice of
classification accuracy. Each subject in the dataset was des-
ignated as a symptomatic subject (Sx) or an asymptomatic
subject (Asx) and as an infected subject (Inf) or uninfected
subject (UnInf) on the basis of symptom scores and the viral
shedding measurements. Then, each of them was labeled as
one of the five stages: i) baseline before inoculation, ii) Asx
and UnInf, iii) Sx and pre-acute, iv) Sx and acute and v)
Sx and post-acute. The reference-aided predictor achieved
an average (cross-validated) state prediction accuracy im-
provement of: 14% for RSV, 13% for H3N2, 9% for HRV,
and 6% for H1N1 with the highest prediction accuracy of:
36.5% for RSV, 61.4% for H3N2, 51.7% for HRV, and 52%
for H1N1. Additionally, this gain in accuracy was achieved
with a smaller panel of genes: 60% fewer for RSV, 39% fewer
for H3N2, 20% fewer for HRV, and 31% fewer for H1N1 [45].

5.2 Time-Dependent Studies
The studies above are primarily focused on examining the

data sets as a whole. The experiments described in this



Figure 6: The balanced success rate as a function of
time post-infection for the pathways that are opti-
mal at t = 29 hours post infection by H1N1. Path-
ways selected by sparse SVM.

section examine the role of the time dependence of the gene
expression data.

Woods et al. [46] identified gene signatures for both H1N1
and H3N2. Without accounting for time, applying the H3N2
factor to the H1N1 data set resulted in correct identification
of 93% of infected subjects, and applying the H1N1 factor
to the H3N2 data correctly identified 100% of the infected
subjects. The H3N2 factor has a sensitivity of 89% near
53 hours and increases to 100% by 69 hours. H1N1 factor
achieves 89% sensitivity by around 60 hours. The influenza
factor was validated on patients hospitalized with H1N1-
like symptoms as well as healthy individuals for the control
group, and was able to correctly identify 92% of the infected
subjects and 93% of the controls.

Rose et al. [47] developed a viral gene expression factor
based on the data from [7] using data from 3 to 4 days
after infection. Temporal changes in the viral expression
factor were then compared with changes of a platelet gene
expression signature in both H1N1 and H3N2 and examined
for correlations [47].

Huang et al. [8] use the H3N2 data set to analyze tem-
poral changes in gene expression during infection using self-
organizing map clustering to identify significant genes.

A recent publication by McClain et al. [9] uses the H3N2
data set to identify a gene signature that is significant as
early as 24 hours after infection. Expression of this gene sig-
nature was monitored in two groups of patients that received
either standard treatment for influenza or early treatment.
Expression of this gene signature peaks around 50 hours for
both groups, but declines more rapidly for the early treat-
ment group [9]. This suggests that pre-symptomatic detec-
tion of influenza using host genetic markers is possible and
that early treatment affects disease progression.

Linel et al. [48] constructed ODE models for dynamic re-
sponse genes (DRGs) and observed clear differences in the

number of significant DRGs between the symptomatic and
asymptomatic subjects (in symptomatic case, the number
of DRGs is significantly larger). DRG signatures for symp-
tomatic subjects with influenza infection were identified us-
ing the ODE model. The false discovery rate is controlled
at 0.05.

In more recent work, we have demonstrated that anomaly
detection algorithms provide a promising technique of anal-
ysis to reveal signatures of the immune response to respi-
ratory viruses [49]. That work is distinguished from this
current study in that no class labels were used from the
symptomatic patients to build the models. In contrast, here
we use labels from both classes in our supervised data learn-
ing algorithms.

6. CONCLUSIONS
We conducted three experiments for evaluating the po-

tential of early prognosis of infection using a pathway based
analysis and supervised learning. We establish that classi-
fication with high accuracy is possible at the earliest stages
of infection including as soon as 5 hours after exposure to
the pathogen. The prognosis pathway found at t = 5 is the
cAMP signaling pathway known to be involved with immune
system regulation. Surprisingly, we observe that classifica-
tion accuracy actually goes down over the first 24 hours, in
particular with with nonlinear and sparse SVM. This may
be due to complex interactions among multiple biological
pathways. Further analysis is required to better understand
this downward evolution of classification accuracy.

The top two pathways for detecting H3N2 at t = 21.5
hours and t = 29 hours, purine metabolism and selenocom-
pound metabolism, respectively, have the genes 3’-phospho-
adenosine 5’-phosphosulfate synthesis 1 and 2 (abbreviated
as PAPSS1, PAPSS2) in common. These genes have been
found to be involved with viral entry into cells as described
above

The results here provide evidence consistent with the idea
that the immune response to infection is really a cascade of
biological defense mechanisms. We found the top pathways
were very much time dependent. The pathways used for
prognosis at t = 5 hours will be different than the pathways
used for prognosis at t = 21.5 hours or t = 29 hours. More
work needs to be done to establish the pattern of the evolu-
tion of pathway activity and to determine signatures charac-
teristic of successful defense against the invading pathogen.
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