CM581A2: NEXT GENERATION SEQUENCING PLATFORMS AND LIBRARY GENERATION

Fall 2015

Instructors:

Coordinator: Carol Wilusz, Associate Professor MIP, CMB Instructor: Dan Sloan, Assistant Professor, Biology, CMB Instructor: Mark Stenglein, Assistant Professor, MIP, CMB

Required Texts and Materials:

No required texts. Students will require access to LabArchives Electronic Lab Notebook which can be purchased for \$15 per semester.

Description:

Graduate students from both biological and computational/mathematical fields will be trained in the theoretical and experimental aspects of next generation sequencing experiments with a focus on the Illumina platform.

Objectives:

Students will be able to:

- Tell the history of DNA sequencing, highlighting the technological advances that have allowed rapid, large-scale sequencing of genomes and transcriptomes.
- Describe the differences between Sanger sequencing, sequencing-by-synthesis (e.g. Illumina) and direct sequencing (e.g. PacBio, Oxford Nanopore)
- Describe in detail the steps to generate a library of DNA fragments for sequencing starting from isolation of genomic DNA including quality control, fragmentation, adapter ligation and amplification
- Highlight how preparation of libraries from total RNA differs from the protocols used for genomic DNA
- Describe how and why rRNA is removed from total RNA prior to RNA-seq
- Explain how and why strand-specific RNA sequencing is employed
- Describe differences in library preparation for eukaryotic versus prokaryotic nucleic acids
- Tell how enrichment strategies and barcoding work, and how they can reduce the costs of DNA sequencing and analysis
- Give details on the steps of an Illumina sequencing reaction and tell how fluorescent output is generated and converted to sequence information
- List multiple applications of NGS sequencing and how library preparation should be modified for each
- Perform library preparation and submit samples for Illumina sequencing
- Troubleshoot common problems arising during library preparation and sequencing

Pre-requisites:

Life sciences BS degree with solid background in molecular biology, or CM000 Introduction to Nucleic Acids (experimental course) or equivalent.

Credit Hours: 1 Credit

Class Breakdown:

This is a 1CR lab class offered over 4 weeks with 8 hr per week of contact time. This course is designed to require an average of 4 hours per week of outside work (preparation, problem sheets, reading, online lectures, quizzes etc). Students with weaker biology backgrounds may need to spend more time preparing for class and/or completing homework.

Teaching Strategies:

Labs, presentations on theory behind experiments, quizzes, problem sets, online lectures, practice through problem solving.

Evaluation:		Grading Scale:
Laboratory Notebook	50%	A 90-100
Online Quizzes	10%	B 80-89
Problem Sets	15%	C 70-79
Attendance/Participation	5%	D 60-69
Final Exam	20%	F 59 & below
TOTAL	100%	This class does not issue grades of + or –

	WEEK 1
	Day 1
PRESENTATION:	Introduction to CM581A2 (30 min)
	Overview, objectives, expectations, grading, academic integrity
	Introduction to LabArchives Electronic Lab Notebook (20 min)
	Introduction to NGS (50 min)
	History of DNA Sequencing
	Sanger Sequencing (Gel, Capillary)
	Transition to NGS
	Applications and Limitations of NGS
	WGS, RNA-Seq, CHIP-Seq, Metagenomics
	Brief overview of Illumina Sequencing-by-Synthesis including library generation
LAB:	Isolation of genomic DNA from a prokaryote
	Lysis, centrifugation, RNAse treatment, column purification (~ 1hr 40 min)
HOMEWORK:	LabArchives Set-Up (30 min)
	Isolation and Quality Control of Genomic DNA (1 hr video lecture online)
	DNA isolation from prokaryotic, eukaryotic cells
	Lysis
	RNA removal
	Organic Extraction & Precipitation
	Quantification & Quality Control:
	Fluorometric
	qPCR
	Nanodrop (limitations)
	<u>Quiz 1</u> (30 min)
LAB:	Day 2
LAB:	Quality control and quantification of genomic DNA (1 hr)
	Fluorometric quantification
	Nanodrop
	DNA fragmentation and Quality Control (2hr)
	Covaris, Tapestation
PRESENTATION:	Library Generation for Illumina Genome Sequencing (1hr)
	Part 1: DNA isolation & fragmentation (30 min)
	Covaris, Enzymatic, Nextera Transposons
	Quality Control
	TapeStation, Bioanalyzer, qPCR, nanodrop, fluorometry
	Part 2: Adaptors, Amplification (30 min)
	Size Selection
	SPRI-beads, Gels, PippinPrep
	Pre-run QC and Quantification
	Gels, TapeStation, Bioanalyzer, qPCR, nanodrop, fluorometry
	Cloning and Sanger Sequencing
HOMEWORK:	LabArchives Recordkeeping (30 min)
	<u>Sequencing Platforms</u> (1hr online video)
	Illumina Sequencing By Synthesis
	How it works
	Differences between MiSeq and HiSeq and NextSeq
	Other technologies – advantages and limitations
	Current technologies – Pacbio, Ion Torrent

Coming Soon - Oxford Nanopore

<u>Quiz 2</u> (30 min)

	WEEK 2
	Day 1
LAB:	Adapter Ligation, Amplification, Size Selection (2-3 hr) Nextera tagmentation reactions Post-Nextera cleanup Setup and run adapter build out PCRs
PRESENTATION:	Optimizing your NGS Experiment (1 hr 40 min) Cost and Time Considerations Library Prep Sequencing Analysis Making Mapping Reads Easier Read length Single end versus paired end reads Mate pairs Controlling Coverage Barcoding and Pooling Strategies Moleculo Troubleshooting Low complexity libraries Read length Errors Amplification Bias Polymerase choice # of cycles Avoiding amplification Misidentification of barcodes Double barcoding Contamination
HOMEWORK:	<u>LabArchives Recordkeeping</u> (30 min) <u>Problem Set 1 (</u> 1 hr 30 min)
LAB:	Day 2 <u>Library size selection and pooling</u> (3 hr) Size select libraries (by gel). Quantification of individual libraries for pooling (by qubit) Pool libraries. Cleanup pool. Additional PCR of final pool may be necessary depending on concentration
PRESENTATION:	RNA-Seq (50 min)RNA isolation and quality controlrRNA depletionpoly(A) selectionRiboZeroFragmentationPhysical, Enzymatic, Chemical, NexteraReverse transcriptionAdapter Ligation, Amplification, Size Selection, QC (same as for DNA, so brief)

 PRACTICE:
 Problem Set 1 (50 min)

 HOMEWORK:
 Quiz 3 (30 min)

 Problem Set 1 (30 min)
 Reading: (1hr)

 Mamanova et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010; 7(2):111-8

 PubMed PMID: 20111037.

	WEEK 3
	Day 1
	Duy 1
LAB:	Quality Control and quantification of final Libraries (2 hr)
	Kapa quant of final pooled library Gel of final pooled library (?)
	Preparation of sample sheet for MiSeq
	reputation of sumple sheet for Miseq
PRESENTATION:	Target Enrichment (1hr)
	Enrichment vs subtraction
	Enrichment methods
	Capture-based enrichment
	Exome sequencing
	[polyA capture] PCR-based enrichment (amplicon sequencing)
	16S rRNA seq and the microbiome
	Affinity-based enrichment
	, RIP-Seq/ChIP-Seq
	Ribosome profiling
	Subtraction methods
	[RiboZero]
	RNaseH-mediated depletion
	DSN-seq/hydroxyapatite (for normalization)
PRACTICE:	Problem Set 2 (30 min)
HOMEWORK:	LabArchives Record Keeping (30 min)
	<u>Quiz 4</u> (30 min)
	<u>Problem Set 2</u> (1hr)
	Day 2
LAB:	Illumina MiSeq Laboratory Visit (2hr)
DDESENITATIONI	Experimental Design and Validation of Results (50 min)
PRESENTATION.	Importance of planning ahead - defining the experimental question and analysis strategy
	Controls – yes, you need them! Examples
	Replicates - Biological versus technical replicates
	Validation of NGS results
PRACTICE:	Problem Set 2 (50 min)
HOMEWORK:	Reading:
-	Sims <i>et al</i> . Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;
	15(2):121-32. PMID: 24434847.
	Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief Bioinform. 2011;12(3):280-7.
	PMID: 21498551
	<u>Problem Set 2: (</u> 30 min)

Applications of NGS (1hr 40 min) /ariant detection /tructural variation detection Aicrobial (16S) metagenomics hotgun metagenomics Genotyping-by-sequencing in-Seq lost/Pathogen sequencing IC-Seq	Day 1
Variant detection tructural variation detection Aicrobial (16S) metagenomics hotgun metagenomics Genotyping-by-sequencing In-Seq Host/Pathogen sequencing IC-Seq	
AD-seq & reduced representation mall RNA-seq	
Practice Exam Questions (1hr 40 min) Prepare for Final Exam	
hr review lecture and quiz provided online	Day 2
• • •	nall RNA-seq ractice Exam Questions (1hr 40 min) repare for Final Exam

- FINAL EXAM: Open Book Final Examination (3hr)
- Course Survey: (20 min)